x^2+195x+7250=0

Simple and best practice solution for x^2+195x+7250=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+195x+7250=0 equation:



x^2+195x+7250=0
a = 1; b = 195; c = +7250;
Δ = b2-4ac
Δ = 1952-4·1·7250
Δ = 9025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9025}=95$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(195)-95}{2*1}=\frac{-290}{2} =-145 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(195)+95}{2*1}=\frac{-100}{2} =-50 $

See similar equations:

| -3n+2n=-15 | | (2x-3)(x+6)-(x+6)=0 | | 11x=9=8x | | 5e+(9)=26 | | 20.50x+700=9720 | | 2x+1/42=1/6 | | (11x-29)=(5x+17) | | 9a-9=13+7a | | -160-10x=-15x+55 | | 18x-13=19+17x | | 5-2x=35. | | 3•(2•x-5)=39 | | -27-2x=66-5x | | 24/4=x/5 | | -21+11x=10+10x | | 4/x=24/12 | | -6x-21=39-3x | | -x-121=8x+195 | | 5x(6x-1)=(10x-7)(3x+1 | | 12x-182=4x+82 | | n*0.75^(n-1)=3.8 | | 30x²5x=30x²-21x+3 | | -25-10x=-8x+39 | | X+0.5y=1 | | 18x-201=4x+93 | | x^2/15=5 | | b-274=-8b-4 | | -4x-214=13x+160 | | -3u-8=u+156 | | X^2+8x12=0 | | -n+6=n+36 | | 2/w=3 |

Equations solver categories